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ABSTRACT

We present a novel approach to generating derivative code
for mathematical models implemented as Fortran 95 pro-
grams using Automatic Differentiation inside a compiler.
This technique allows us to combine the advantages of both
operator overloading and source transformation based tools
for Automatic Differentiation. Furthermore, the compiler’s
infrastructure for syntactic, semantic, and static data flow
analysis can be built on.
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1. INTRODUCTION

Today, the mathematical models of a large number of
scientific, engineering, and socio-economic applications are
given as computer programs written in some high-level pro-
gramming language, such as Fortran 95. In order to make
the highly desirable transition from the exclusive simula-
tion of the underlying real-world processes to a systematic
optimization of both the model and the corresponding ap-
plication derivative information of the model outputs with
respect to certain parameters is required. Straight-forward
numerical differentiation using divided difference quotients
is often just not good enough. It may either lack the required
accuracy or the possibly very large number of parameters
leads to an unrespectable computational complexity. A rem-
edy for these difficulties is Automatic Differentiation (AD)
[11, 7, 10]. Based on the well-known partial derivatives of
the elementary arithmetic operators (4, —, %, /) and intrinsic
functions (sin, cos, exp, ...) with respect to their arguments
the chain rule is used to compute first and possibly higher-
order derivatives. This can be implemented as a source
transformation process which creates a derivative code for a
given program. Consider, for example, the following simple
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program implementing a vector function F : R'> — IR
where (a, x,y(10)) — y.

do i=1,10
if (i>1) then
h=x (i) *y (i-1)
else
h=a*x (i) +y (10)
endif
y(i)=sin(h)
end do

For brevity, the declaration and initialization part has been
omitted. Think of the above as the body of a subroutine
SUB with REAL arguments a,x, and y and a local REAL vari-
able h. Suppose that we are interested in the first-order
derivative information of y = (y;)i=1,...,10 with respect to
x = (xj)j=1,...,10, i.e. the corresponding 10 x 10 Jacobian
matrix (or simply Jacobian) F' = (dy;/0x;):,j=1,...,10. The
elements of x are called independent variables whereas the
elements of y are said to be dependent variables. Both inde-
pendent and dependent variables are set to be active. Fur-
thermore, all variables whose value depends somehow on the
value of an independent variable and which affect the value
of some dependent variable are called active. Above, h is
active while a remains passive since there is no dependence
of its value on any of the independent variables. Knowing
the set of all active variables at every single point in the
program is crucial for the efficiency of AD. For large-scale
applications applicability of AD is directly dependent on
its efficiency. A static data flow analysis can be applied to
achieve this [15].

Using the forward mode of AD [13, Chapter 3] a differen-
tiated subroutine D_SUB is generated for SUB as follows.

do i=1,10
if (i>1) then
d_h=d_x (i) *y(i-1)+x(i)*d_y(i-1)
h=x (i) *y (i-1)
else
d_h=a*d_x(i)+d_y(10)
h=a*x (i) +y (10)
endif
d_y(i)=cos(h)*d_h
y(i)=sin(h)
end do



Derivative components d_x, d_h, d_y are associated with all
active program variables and they are declared accordingly.
Knowing how to compute the local partial derivatives of the
elementary functions *, -, and sin for given values a and x
one easily obtains d_y for given d_x. For example, we know
that the partial derivative of x(i)*y(i-1) with respect to
x(1) is y(i-1). Similarly, differentiating sin(h) with re-
spect to h yields cos(h). The chain rule is used to com-
bine these local partials in a mathematically correct way. In
fact, forward mode AD computes d_y as the Jacobian times
vector product F’ - d_x. In order to accumulate the whole
Jacobian column by column the values of d_x are chosen as
the Cartesian basis vectors in JR'°. In other words, F’ can
be obtained at a computational cost which is proportional
to the number of independent variables. Alternatively, re-
verse mode AD [13, Chapter 3] delivers the whole Jacobian
row by row at a computational cost which is proportional
to the number of dependent variables. This is of particular
interest for the computation of large gradients (see cheap
gradient principle in [13, Chapter 3]) where there is a single
dependent variable only.

There are two approaches to implementing software tools
for AD. Operator overloading tools, such as ADOL-C [3] and
ADO1 [1], exploit the operator overloading capabilities of
languages such as C++ and Fortran 95. They define a new
active data type containing the derivative component d_h
in addition to the function value h. This corresponds to
doublets (h, d_h) [13, Chapter 5]. All active variables must be
redeclared correspondingly. The arithmetic operators and
intrinsic functions are overloaded for arguments of the new
active type, e.g. (y(i), d_y(i)) = (sin(h), cos(h)*d_h).

Source transformation tools, including ADIFOR [2], ADIC
[4], and TAPENADE [5], implement compiler front-ends to
generate a differentiated version of the original program as
shown above. The code is analyzed both syntactically and
semantically followed by a static activity analysis. AD is
performed on the abstract internal representation, for exam-
ple, by generating a differentiated version of the annotated
syntax tree which is then unparsed. The result is a deriva-
tive code written in the same language as the original code.
It must be integrated into existing applications via driver
routines to be provided by the user. For example, the value
of d_x must be initialized in addition to the original inputs
in the example above.

Operator overloading tools for first and higher order deriva-
tives are rather easy to implement and often very flexible and
robust. On the downside, they use a derived data type that
prevents the compiler from performing highly desirable code
optimizations. The lack of a framework suitable for static
data flow analysis forces the user of such tools to decide
which program variables are active. The straight forward
approach of making all floating-point variables active is of-
ten too much of an overestimation to be feasible. Selecting
the right ones manually is hopeless for codes containing sev-
eral thousands of program variables. For all these reasons,
operator overloading tools for AD are often not well-suited
for large-scale application programs.

In many cases the derivative code generated by source
transformation tools for AD is more efficient. Activity anal-
ysis reduces the amount of trivial derivative computations
considerably. The generated code is run through a compiler
which can then produce optimized code. However, the devel-
opment of such tools is considerably more difficult. Essen-

tially, an industrial-strength compiler front-end is required
whose implementation is everything but trivial. Robust and
efficient static data flow analyses that minimize the over-
estimation resulting from their implicit conservatism must
be provided [19]. Most available source transformation AD
tools satisfy only a subset of these requirements.

2. FORTRAN 95 COMPILER AD

In this section we describe an approach which aims to-
wards combining the advantages of both operator overload-
ing and source transformation tools for AD. This work is the
first stage of a collaborative research project between the
Computer Science Department, University of Hertfordshire,
Hatfield, and NAG Ltd., Oxford, UK. Funding has been pro-
vided by EPSRC (www.epsrc.ac.uk) under research grant
number GR/R55252/01. The techniques described are im-
plemented in an experimental version of the NAGWare For-
tran 95 compiler which is planned to be released for beta-
testing by the end of 2002. Examples and numerical re-
sults as well as further technical details can be found on the
project’s web site under

www.nag.co.uk/nagware/research/ad_overview.asp.

We consider compiler AD in Fortran 95 as a hybrid operator
overloading / source transformation technique. The entire
mathematical functionality is contained within a Fortran 95
module named active_module.f95. An opaque user-defined
active data type ACTIVE_TYPE is provided together with over-
loaded versions for the elementary arithmetic operators and
intrinsic functions. In the current version the user can se-
lect independent and dependent variables and compute the
corresponding Jacobians. For example, the vector forward
mode [13, Chapter 3] can be implemented using the follow-
ing active type.

TYPE ACTIVE_TYPE

REAL :: v

REAL, ALLOCATABLE, DIMENSION(:) :: d
END TYPE ACTIVE_TYPE

In addition to the function value a vector of derivative com-
ponents can be allocated. In contrast to the scalar forward
mode, this allows the computation of Jacobian times ma-
trix products F' - S (instead of a Jacobian times vector
product) by performing a single evaluation of the derivative
code. To compute the whole Jacobian of a vector function
F: IR" — IR™ the d component of every independent scalar
variable (or every scalar component of independent array
variables) is initialized as a Cartesian basis vector such that
S becomes equal to the identity matrix in IR™. All elemen-
tary arithmetic operators and intrinsic functions are over-
loaded to handle the new data type in a mathematically
correct way. For example, a sine of an active scalar variable
is implemented as follows.

ELEMENTAL FUNCTION Sin_ACTIVE(argl) RESULT (res)
TYPE(ACTIVE_TYPE), INTENT(IN) :: argl
TYPE (ACTIVE_TYPE) 11 res

res)v = sin(argliv)
IF ( ALLOCATED( argl¥d ) ) THEN
ALLOCATE( res’%d(1:UBOUND (argi¥d,1)) )



res/d = arglld * cos( argliv )
END IF

END FUNCTION sin_ACTIVE

The function value res’v is computed as usual. Addition-
ally, the values of the derivative components are evaluated
using the partial derivative of sine with respect to its argu-
ment and the chain rule. Excerpts from active module.f95
can be found on our web site.

When using the differentiation-enabled NAGWare For-
tran 95 compiler the example from the previous section is
modified as follows.

TYPE(DERIV_TYPE) :: jac

DIFFERENTIATE
INDEPENDENT (x)
do i=1,10
if (i>1) then
h=x(i)*y(i-1)
else
h=a*x(i)+y(10)
endif
y(i)=sin(h)
end do
jac=JACOBIAN(y,x)
END DIFFERENTIATE
write(*,*) DERIVTOREAL(jac)

With the -ad compiler switch set differentiation takes place
inside the active section which is framed by DIFFERENTIATE

END DIFFERENTIATE. The variable x is set to be inde-
pendent and the Jacobian of y with respect to x is obtained
by calling JACOBIAN(y,x). The result of JACOBIAN is of type
DERIV_TYPE. The conversion function DERIVTOREAL extracts
the REAL values which we simply print in this example. We
aim to keep the user interface as simple as possible. This
is how the differentiation enabled version of the NAGWare
Fortran 95 compiler handles this code in principle: Lexical,
syntax, and semantic analysis results in some form of an
annotated syntax tree and a symbol table; x is marked as
independent; y is marked as dependent; a, so far, very sim-
ple static activity analysis marks h as active and recognizes
that a remains passive; active copies of type ACTIVE_TYPE
are generated for all active variables; their values are initial-
ized as the original values; the derivative component of the
x(i) are initialized as the Cartesian basis vectors e; € IR
for i =1,...,10; inside the active section the syntax tree is
modified such that all computations are performed on the
active copies using the overloaded operators and intrinsic
function defined in active module.f95. The derivative ac-
cess function JACOBIAN is also defined in active module.f95
which can be viewed in part on our web site. Internally, the
compiler has been extended to accept the essential new lan-
guage constructs. Both ACTIVE_TYPE and DERIV_TYPE are
“known” to the compiler and we have access to the operator
overloading resolution phase. In principle, this enables us
to generated efficient derivative code based on activity anal-
ysis and intermediate code optimizations. The latter, are
the subject of ongoing work toward a second prototype to
be released by summer 2003. It will feature both statement-
[8, 16] and basic-block-level preaccumulation [17, 20] of local

gradients and Jacobians. So far, our main focus has been on
establishing the interface between the compiler and AD al-
gorithms. Potentially, code optimization algorithms can be
developed not only at the intermediate code level but even
for specific architectures. In general, this is based on the
fact that derivative code is like any other code. Whatever is
good for code in general must be good for derivative code in
particular. However, for the latter we have additional infor-
mation available which can and should be exploited for the
development of specialized code optimization algorithms.

As pointed out before, the efficiency of derivative code
depends strongly on the quality of the activity analysis.
Static analysis often results in a considerable overestima-
tion of the active set. Combining it with dynamic analysis
can overcome this problem at the cost of an overhead that
depends on the quality of the static analysis itself. This can
be achieved by using the sparse version of ACTIVE_TYPE as
described below.

A further improvement has been achieved from the point
of view of adding new forward mode AD functionality to the
compiler, for example the capability to compute higher order
derivatives using truncated Taylor series [9] or (value, gradi-
ent, Hessian matrix) triplets [14]. All we have to do is write a
new active module.f95 which defines a corresponding ac-
tive data type and implements the overloaded operations,
intrinsic functions and derivative access functions.

Our approach allows us to exploit sparsity in the com-
putation at various levels. Seed matrix compression tech-
niques [12, 18] can be applied in vector forward mode if the
Jacobian itself is sparse. An example is discussed in the
appendix. In sparse forward mode [13, Chapter 6] the d
components are implemented as sparse data structures (for
example, as (index, value) pairs) which allows to exploit
sparsity of the problem at an elemental level. Furthermore,
the result of activity analysis can be used to exploit a likely
symbol-level sparsity. Therefore, we implemented another
active data type as follows.

TYPE GRAD_TYPE
REAL, DIMENSION(:), ALLOCATABLE :: g
END TYPE GRAD_TYPE

TYPE ACTIVE_TYPE

REAL :: v

TYPE (GRAD_TYPE), DIMENSION(:), ALLOCATABLE :: d
END TYPE ACTIVE_TYPE

Every active variable contains a d vector with a number of
components of type GRAD_TYPE that is equal to the number
of independent program variables. In our example this num-
ber is equal to one since x is the only independent program
variable. Symbol-level sparsity is not an issue in this simple
case. In general, the single components of d are allocated as
g vectors with a size that equals the number of scalar ele-
ments in the corresponding independent program variable.
If activity analysis tells us that an active variable does not
depend on some independent variable then the correspond-
ing d entry is simply not allocated. This decision can either
be made at compile time which corresponds to the classical
static activity analysis as described in [15] or it can be made
dynamically by including a check on allocated d components
into the definition of the overloaded operators and intrinsic



functions. In a dynamic activity analysis framework the d
component of a passive variable that could not be identified
as passive by the static analysis remains deallocated.

3. CONCLUSION AND OUTLOOK

We believe that in order to generate highly robust and effi-
cient derivative code the corresponding AD algorithms have
to be incorporated into existing industrial strength compil-
ers. Potentially, this approach gives us access to all stages
of the compilation process allowing us to perform AD spe-
cific static analyses and optimizations of the derivative code.
Furthermore, hybrid static and dynamic data flow analyses
can be implemented.

So far, we have been concentrating on incorporating for-
ward mode AD algorithms into the NAGWare Fortran 95
compiler. We consider this as the first step towards a fully
functional adjoint compiler for differentiating numerical pro-
grams using the reverse mode of AD. Although the basic
infrastructure has been established a considerable effort will
be necessary to achieve this goal.
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APPENDIX
A. BRATU PROBLEM WITH SEEDING

We consider a variant of the Bratu problem from the MIN-
PACK test problem collection [6] given as the following For-
tran routine.

SUBROUTINE EXPL(dim,parmax,x,prm,F)
INTEGER, INTENT(IN) :: dim, parmax
REAL, INTENT(IN) : x(dim), prm(parmax)

REAL, INTENT(INOUT) :: F(dim)
INTEGER Y
REAL :: h

h = 2.0/(dim+1)

F(1) = -2*x(1)+h*h*prm(1)/12.0% &

& (1+10*exp(x(1)/(1.0+prm(2)*x(1))))
F(2) = x(1)+h*h*prm(1)/12.0% &

& exp(x(1)/(1.0+prm(2)*x(1)))

DO i=2,dim-1
F(i-1) = F(i-1)+x(i)+h*h*prm(1)/ &
& 12.0*exp(x(i)/(1.0+prm(2)*x(i)))
F(i) = F(i)-2*x(i)+h*h*prm(1)/ &
& 1.2%exp(x(i)/(1.0+prm(2)*x(1)))
F(i+1) = x(i)+h*h*xprm(1)/12.0% &
& exp(x(i)/(1.0+prm(2)*x(i)))

END DO

F(dim-1) = F(dim-1)+x(dim)+h*h*prm(1)/ &
& 12.0%exp(x(dim)/(1.0+prm(2)*x(dim)))
F(dim) = F(dim)-2#x(dim)

F(dim) = F(dim)+h*h*prm(1)/12.0% &

& (1+10*exp(x(dim)/(1.0+prm(2)*x(dim))))
END SUBROUTINE EXPL

Our objective is to compute the Jacobian matrix F’ of F with
respect to both x and prm using Curtis-Powell-Reid (CPR)
seeding [12]. In our example we set dim = 7 and parmax = 2.
Using the vector forward mode provided by the NAGWare
Fortran 95 compiler we get the following 7 x 9 Jacobian:

-1.89 1.01 0.00 0.00 0.00 0.00 0.00 0.21 -0.48
1.01 -1.87 1.01 0.00 0.00 0.00 0.00 0.40 -1.78
0.00 1.01 -1.87 1.01 0.00 0.00 0.00 0.49 -2.70
0.00 0.00 1.01 -1.87 1.01 0.00 0.00 0.56 -3.50
0.00 0.00 0.00 1.01 -1.87 1.01 0.00 0.49 -2.70
0.00 0.00 0.00 0.00 1.01 -1.87 1.01 0.40 -1.78
0.00 0.00 0.00 0.00 0.00 1.01 -1.89 0.21 -0.48

It is obtained by initializing the joint derivative compo-
nents of the independent variables x and prm as a 9 x 9
identity matrix. Notice, that F’ is sparse. In fact, a com-
pressed version can be computed by seeding the derivative
components of the independent variables as a 9 X 5 matrix
S with rows representing Cartesian basis vectors in IR®.

CPR seeding is based on the idea that certain columns
of the Jacobian can be merged to share storage. For exam-
ple, column 1 and column 7 could share one column, thus
resulting in a compressed version of the Jacobian. This im-
plies that the sparsity pattern must be known in advance in
order to exploit matrix compression techniques. Remember
that the derivative code generated by the compiler in dense
vector forward mode always loops over the derivative compo-
nents of all active variables. Many of their entries are equal
to zero, leading to predictably trivial multiplications that
one would like to avoid. Therefore, instead of computing
the Jacobian as a Jacobian times identity matrix product,
one could try to compute a compressed Jacobian using a
seed matrix with fewer columns than the identity. Since the
number of independent variables is often very large, the size
of the seed matrix can become much smaller, leading to a
decreased complexity of the Jacobian accumulation.

In CPR seeding, one considers the column incidence graph
of the Jacobian to try to determine a minimal vertex color-
ing. Whenever two vertices share the same color, the corre-
sponding columns can be stored in the same column of the
compressed Jacobian. In our example, the column incidence
graph has the following structure.

Unfortunately, since the vertex coloring problem is known
to be NP-complete in general, the use of heuristics is es-
sential. The coloring in the example graph has been found
“by inspection”. Different colors are represented by different
vertex shapes. The number v of different colors used deter-
mines the number of columns in the CPR seed matrix. Its
rows are Cartesian basis vectors in IR”. In our case v = 5.
Whenever two vertices share the same color, the correspond-
ing rows in the seed matrix contain the same Cartesian basis
vector. The compressed Jacobian B can be computed using



the new features of the NAGWare Fortran 95 compiler as
shown below.

PROGRAM MAIN
IMPLICIT NONE

INTEGER, PARAMETER ::
INTEGER, PARAMETER ::

dim = 7, parmax = 2
n = dimt+parmax

INTEGER HE
REAL :: x(dim), prm(parmax)
REAL :: f£(dim)
TYPE (DERIV_TYPE) 11 jac
REAL :: seed1(9,5)
X = (/ 1.72, 3.45, 4.16, 4.87, 4.16, &
& 3.45, 1.72 /)
prm = (/ 1.3, 0.245828 /)
seedl = 0
seed1(1,1) = 1; seed1(2,2) = 1; seed1(3,3) =1

seed1(4,1) = 1; seed1(5,2)
seed1(7,1) 1; seed1(8,4)

n
= e

DIFFERENTIATE
INDEPENDENT( x, SEED=seed1(1:7,:) )
INDEPENDENT( prm, SEED=seed1(8:9,:) )

call EXPL( dim, parmax, x , prm, f )

jac = JACOBIAN( f )
END DIFFERENTIATE

CALL WRITE_JACOBIAN( jac )
CONTAINS
SUBROUTINE EXPL(dim,parmax,x,prm,F)

END PROGRAM MAIN

Both the inputs and the seed matrix are initialized. The lat-
ter is then divided into the two parts corresponding to x and
prm and passed as arguments of the respective INDEPENDENT
statements. Everything else is take care of internally.

Compiling the above with the —ad compiler switch set re-
sults in the generation of code that produces the following
output.

-1.89 1.01 0.00 0.21 -0.48
1.01 -1.87 1.01 0.40 -1.78
1.01 1.01 -1.87 0.49 -2.70

-1.87 1.01 1.01 0.56 -3.50
1.01 -1.87 1.01 0.49 -2.70
1.010 1.01 -1.87 0.40 -1.78

-1.89 0.00 1.01 0.21 -0.48

F' itself can be restored by a simple back-substitution
process as explained, for example, in [13, Chapter 7].
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